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Abstract

In this paper, we consider a multi-unit Dutch auction over the Internet where auctioneer gradually

decrements per unit price of the item during the course of the auction. We investigate an optimal

price control problem of the auctioneer, that is, the problem of finding a decrementing price

sequence that maximizes his total expected revenue in the presence of uncertainty with regard to

arrival pattern of bidders and their individual price-demand curves.

We start with an analysis of an analogous multi-unit pay-your-bid auction in a discrete setting

and provide a characterization of mixed strategy equilibrium. Since it is difficult to arrive at a

pure strategy equilibrium, we deviate from game theoretic consideration and model the above

decision problem in a Dutch auction as a single-agent Reinforcement Learning in an uncertain

non-stationary auction environment wherein the auctioneer (or his agent) uses its experience

interacting with the environment to improve his (its) pricing strategies.

Over the Internet, auctioneer always has an option of concealing information pertaining to

dynamics of the ongoing Dutch auction from bidders. In this situation, it can be assumed that

each bidder values the items independently of other bidders. For this case we develop a finite

horizon Markov Decision Process (MDP) model with undiscounted returns and propose a Q-

learning algorithm for generating a decrementing price sequence for optimal revenue.

In a more general setting where bidders can observe the ongoing auction, the state-space

representation will lead to the domain appearing non-Markov to the reinforcement learning agent.

In a particular case where history provides the needed missing state information, we investigate

the applicability of direct reinforcement learning and contrast the temporal difference based RL

with actual return based RL. We show that direct application of temporal difference based

reinforcement learning algorithms will in general fail to learn even deterministic optimal policies

in a Dutch auction environment. Furthermore, our analysis suggests that actual return based

reinforcement learning algorithms be used instead.
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1 Introduction

A Dutch auction is a form of a multi-unit single item first price auction widely used for sale

of perishable commodities such as flowers and also for disposal of inventory of items with low

salvage value. This auction form is particularly recommended when time factor plays a crucial

role because of declining intrinsic value of the item or because of high maintenance (holding)

cost of the item. The auction mechanism is detailed below.

Multiple units of an item are placed on auction for sale and the number of units, the duration of

auction are announced before the auction begins. A Dutch auction begins with the auctioneer

announcing a very high price per unit. This price is then lowered gradually until a buyer calls a

halt. The first buyer to do so acquires the desired number of objects at the price outstanding when

he or she intervened and the auction continues with the remaining number of items. There are

two variations on how the initial price for the remaining units is reset once a set of units is

acquired by a buyer. In a decreasing type of Dutch auction, the starting price for the remaining

units is the price at which the previous buyer gets the items and the auction restarts following the

same rules. In the other form of the auction, this price is reset to some price higher than that of

the last sale. In this paper, we analyze the decreasing type of Dutch auction in a discrete

framework and derive price control strategies for the auctioneer that will maximize his expected

revenue. But the analysis presented here can be extended to the second form of the auction.

The above auction is analogous to a multi-unit first price sealed-bid auction but for some

differences in strategy space of bidders. Contrary to the sealed-bid scenario, the bidders in this

auction will get to know about bids of winners who bought items. In the sealed-bid case, multi-

unit first-price auctions have been analyzed by Menezes and Monteiro [1995] and it is shown that

game theoretic equilibrium in continuous strategy space exists only in a very few special cases.

We give characterization for mixed strategy equilibrium in a discrete domain. Since it is very

hard to derive conditions under which pure strategy equilibrium exists in such a discrete model,

later in this paper, we depart from the game theoretic domain and look at the problem from a

macroscopic perspective, i.e., where bidders' demand is aggregated into a price-demand
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variational function over time, in a discrete setting. Later, we analyze the applicability of

Reinforcement Learning based algorithms in the absence of a proper model of bidders' strategies.

Recently, Reinforcement Learning (RL) has received increasing attention in the e-commerce

domain. Kephart and Tesauro [1999, 2000], for instance, focus on dynamic pricing issues in

oligopoly markets using RL framework in the underlying stochastic games. Convergence of RL

in general sum games is an active area of research. (See Hu and Wellman [1998])

In contrast with the above studies, our development deviates from game theoretic perspective

and rather views auctioneer's decision problem as a single -agent learning in an uncertain

environment. We state a few reasons for adhering to such an approach.

In an Internet -enabled Dutch auction, auctioneer, while designing the auction, may choose not to

reveal all the information to bidders who access his auction page. For example, the auctioneer

may hide information pertaining to quantity remaining from a bidder upon his arrival. In such

cases, the auctioneer's price control problem can be appropriately modeled as a stochastic control

problem in non-stationary Markovain domains. The non-stationarity stems from two

considerations. Firstly, if the items are of perishable nature, then intrinsic value of the items

decrease with time and hence one would find variations in bidding patterns. Besides this, as

mentioned in Kagel [1995] bidders will derive positive utility from suspense playing odds at the

gambling table. This leads to non-stationary evolution as auction progresses.

At the other extreme, the bidder or his agent may be allowed to observe complete dynamics

during the course of the auction which may lead to a strategic game among participants. In such

cases, bidders update their estimates of other bidders' valuations per unit of item as offering price

goes down. Even in these cases, the dynamics can still be modeled as a control problem for the

auctioneer in a Non-Markovian domain. In the absence of a proper model which can predict the

outcomes, our aggregated view will allow us to exploit rich theory underlying learning in Markov

Decision Processes (or in general in sequential decision processes), namely the reinforcement

learning, to learn in a disguised way the price-demand variational function over time while

concurrently attempting to act optimally in such domains. While in Markovian domain, model-

free algorithms such as Q-learning (Watkins and Dayan [1992]) provably converge to optimal

policies, in non-Markovian domains no such satisfactory theory appears in literature. However,

there have been quite a few attempts in this direction. See Singh et al [1994] and Jaakkola et al
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[1995] for studies on application of RL methods in Partially Observable Markov Decision

Process (POMDP) domains.

Contributions of our paper are as follows: We analyze an approximately strategically equivalent

multi-unit pay-your-bid auction in a discrete framework where strategic price-quantity pairs are

assumed to come from a finite grid. In this setup, we provide characterization for the structure of

mixed strategy equilibrium. However, it is very difficult to find conditions under which

equilibrium in pure strategies exist. At this point we deviate from game theoretic domain and

discuss price control problem in Dutch auctions using single agent learning. Here again we

discuss the decision problem in two different scenarios. In the first scenario, a bidder upon his

arrival can have the knowledge of only the ongoing price. The bidder may choose to bid at the

price or may want to come back to the system after a random time interval in which case he will

be treated as a fresh arrival into the system. In the second case, a bidder is allowed to have

knowledge about prices at which items were previously bought in the ongoing auction and also

about the quantity remaining in the inventory. In the former case, the dynamics can be modeled

using Markov Decision Process framework since a bidder's decision is dependent only on the

observed state of the auction. However in the latter case, the bidder can effectively use the

information avaliable, such as rate of quantity movement and also winners' quotes, to act

strategically. In such situations, the control problem falls in non-Markovian domain. In both the

cases, it is fairly difficult to build a model for auction dynamics. That is, it is difficult to arrive at

transition probability structure that will capture the dynamic behavior of the system. In such

situations, the Reinforcement Learning (RL) framework proposed in this paper, offers a very

simplistic adaptive control framework that learns an optimal strategy from its interactions with

auction environment instead of building suitable models. The auctioneer can devise an RL agent

which can autonomously act on his behalf and take price control decisions in an adaptive

fashion. Since RL uses a simple updating procedure, intelligence to the agent can be incorporated

with minimal effort.

To this end, we consider bidders as part of the environment and the auctioneer by way of

executing price decrementing action learns from responses (or immediate reinforcement

sequences) from the environment. In the Markovian case, we propose a finite horizon Markov

decision process model in finite state and action spaces and present modifications necessary to
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model the problem as a learning problem over infinite horizon. Later, we devise a Q-learning

algorithm for the auctioneer, which can be proven to converge to an optimal strategy using

standard stochastic approximation techniques.

In the Non-Markovian case, intuition suggests that any Temporal Difference based learning

algorithm such as Q-learning should be able to learn a best deterministic observation based

policy. We design some realistic and illustrative Dutch auction examples to show that such a

hypothesis fails. Also, we further articulate that actual-return based learning methods (eg. Monte-

Carlo based) may offer superior performance compared to TD based learning methods in these

domains.

Later, we discuss simulation experiment for Dutch auctions that models bidders and their

strategies. In some simple test cases where optimal policies can be directly obtained, our

experiments show that the proposed learning algorithms converge to optimal policies within a

reasonable number of iterations.

This paper is organized as follows. In the next section, we develop the Markovian Model and

provide details of our Q-learning based algorithm for the same. Section 3 discusses the non-

Markovian setting and analyses performance of TD methods using a few illustrative realistic

examples. In Section 4, we give a brief sketch of our simulation design. Our sample simulation

experiments show that Q-learning algorithms perform well even in cases where Markovian

assumption is marginally violated. In a completely non-Markivan setting, trace- based (actual-

return) mechanisms give higher expected rewards compared to single-step Q-learning. Since our

experimentation is still in progress, we will discuss the early qualitative results in this paper. In

Section 5, we provide some pointers to future research.

2. Multi-Unit Pay-Your-Bid Auction

Consider auctioning of items in inventory of an auctioneer using a Pay-your-bid auction

in sealed bid format. This auction is generally used to dispose off items with low salvage

value. No strategic equivalence is known to exist between the pay-your-bid auction

considered here and a multiunit Dutch auction. However, we the analysis presented

below can be used as first level approximation to Dutch auctions.
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A multiunit pay-your-bid auction is a discriminatory price auction for multiple identical

units of an item where price-quantity orders of bidders are arranged in the decreasing

order of price and the auctioneer accepts quantities up to the amount he is selling. In this

auction format, each bidder pays the amount equal to his bid. In this document, we

consider a discrete version of the above auction in which bids are chosen from a finite

grid of price-quantity pairs.

Assume that a maximum quantity of N units of an item are being sold in a

disci Iminatory price auction. To make our development simple, we assume that there are

only two bidders participating in the auction. Each bidder has an associated demand

function Dt :[0,/?] -> R+, / = 1,2 which is assumed to be continuous and strictly

decreasing. Further assume that ^fD (0) > N and ^tD (p) = 0 (Assumption Al).

From the assumptions on the demand functions it follows that there exists a unique

market -clearing price p* which satisfies^] D,(p*) = N. Bidders are allowed to bid a

price from [0, p] and a quantity less than N.

The strategy of bidder / is represented by a price-quantity pair (pnq,) where these pairs

are selected from the grid Q defined as follows:

<5=: Px Q= {ma \m = 1,2,..., m}x {nf5\n = 1,2,...,/}} where mand ware such that

b N
a = —- and J3 = — for pre-determined unit grid values, a and (5 of price and quantity

m h

respectively. Here Pis the one- dimensional price grid and Qis the one-dimensional

quantity grid. This discretization provides a realistic framework since in multi-unit

auctions of commodities auctioneer will accept quantity and price bids in multiples of

small units. In the following we make an assumption that a and (5 are such that

D} (2a) + D2 (2a) > N. This condition says that (discretized)(true) demand functions of

the bidders are such that price as low as 2a rather than zero price used in Assumption
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Al is enough to sell off the units in the inventory. It is always possible to choose an a

that approximates this behaviour.

in the continuous counterpart of this auction, the items are allocated to the two bidders as

follows. Say (p},qx) and (/?2,g2)are the bids placed by bidder 1 and bidder 2

respectively. If px > p2, then bidder 1 gets his quantity and the bidder 2 gets the

remaining quantity, N -qx or q2 whichever is smaller. If p2 > p}, then the allocation is

analogous with bidders' roles reversed. If px = p2, then both the bidders will get their

respective quantities whenever q} +q2 < N. If q} +q2 > N, each bidder is rationed

where rationing is proportional to their respective quantity bids. Formally, the allocations

Zx{px,qx,p2,q2) and Z2(px,qx,p2,q2) for bidder 1 and bidder 2 respectively are as

given by:

Zl(pl,q],p2,q2)= qx^N, if Pl > p2 (1)

= g l TV, if px=p2

= qx A {iV - q2}, if px < p2

and

^2(J9i'9i'/72^2)= #2 A N, if p2 > p} (2)

= — i V , if j?o = Vs

= q2 A { # - ? , } , if p2 <p}
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The pay-offs for the bidders (consumer's surplus or consumer's rent) are given

respectively by:

(3)

and

0) -p2)ds. (4)

One way to interpret any price-demand function is as follows: the price p corresponding

to any quantity q on a bidder's demand function is the price a bidder is willing to pay

for an extra unit of the item given that he has currently q units of the item for his

consumption. Thus, any bidder's demand function can also be treated as his marginal

utility function. The bidder's surplus at any price p is the area of his marginal utility

curve above the price p as shown in the figure below. Hence (3) and (4) follow.

Price

grginal

tility curve

Quantity

2.1 Allocations in Discrete Model

Now observe that in the continuous price and quantity strategy space, if both the bidders

bid the same price, the rationed allocation is proportional to the quantity he bids. But in a

discrete setting, it may happen that this quantity so apportioned may assume fractional
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values and hence may not fall on the grid. In such cases, the actual allocation is rounded

off to the maximal point on the quantity grid which lies below the actual value. In other

words, the new allocations are according to the following rules:

Let

N}

and analogously define z2 (p,q^p,q2)- Now the allocations are redefined as follows:

Z\(P\>4\>P2>q2)= q\AN> i f Pi > Pi

= q{ A zx(p9ql9p,q2), if px = p2

if Px <p2

Define Z2(px,ql9p29q2) analogously. The pay-offs are found replacing the Z, and Z2

in (3) and (4) by Zx and Z2 respectively.

Since any bidder is allowed to choose his strategies from the grid Gj, his true

(continuous) demand function needs to be suitably transformed to take care of the

discretization effect. If at any price p, the quantity demanded against a bidder's

original continuous demand function does not fall on the nodes of the grid Q, but cuts

the quantity grid at an intermediate point between two successive quantity grid nodes,

then this quantity needs to be adjusted to one of these nodes. This is done according to

consumer's surplus against each such adjustment and the node which gives maximum

surplus is selected for consideration. That is, the modified demand function looks as

follows:
14



If D,(p) <J3 at any price p, then set £>,(/>) = j3. If D,(p) > N, set A(/>) = M For

any p such that j3<Di(p)<N define D,(p) and A(/») as follows:

D,(P)= max{g e Q:^< A(^)} a n d Di(p)=min{q <=Q:q>D (p)}

Then the modified £>,(/>) is as follows:

=D,(p) if {(A"'(s)-p)ds > |(A"'(*)-P)ds

With the above discrete representation, we analyze the auction game in the ensuing

sections.

2.2 Auction Game in Mixed Strategies

We consider an extension of the above game in which bidders may decide to play

randomized strategies. Consider the collection, p , of probability mass functions

on Q. That is, / e p <=> f(p9q) ^ 0 and ^f(p9q) = 1. Let / , , / 2 e p be any mixed

strategies of bidder 1 and bidder 2 respectively. Then, their individual expected pay-offs

against the strategy profile (/1?/2) are given respectively by
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A strategy profile (f*, /2*) is a Nash equilibrium for the game if

/,* =argmax / i <"(/, ,/2*) and /2* =argmax /2 ^ (f\f2).

The following proposition is a direct consequence of Nash's theorem for finite action

games.

Proposition 2.1 A Nash equilibrium in mixed strategies exists for the discrete auction

game

Below we give a characterization for mixed strategy equilibria and later develop some

conditions that a pure strategy equilibrium should satisfy. Interestingly, in the equilibrium

of the auction game considered here, the price supports of individual players are similar.

Or more precisely,

Proposition 2.2 Let {f\,fl)be a Nash equilibrium. Further, let

P* := {p:3q 3 f* (/?, q) > 0} and P* := {p : 3q 3 /2* (/?, q) > 0}. Then the following hold:

Vp, eP*3p2 eP2* 3/?2 €{/?, ~a ,p ,p + a} -(5)

Vp2 e/^'3/?, EPJ* ap, e{p2 -a,p29p2 +a} -(6)

Proof (by contradiction):

Suppose that (5) and (6) do not hold. That is, suppose that there exists a p\ e P* such

that P2 n {p\ - a, p\ ,p\ + a) = <j>. We analyze the situation in two disjoint cases.

Case 1: Suppose 3p\ e P* such that p\ > p\ + a .
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In this case, the bidder 2 can move the probability mass on p2 to p\ + a and increase his

expected pay-off. To see this, lets redefine the second bidder's strategy f2 as follows:

fiiP^) = flip A), if P * p\ ox if p * p\ +a

= 0, if p = p\

Now it is easy to see that the difference in bidder 2's expected pay-off due to the above

change in randomization of his pure strategies is:

Now,

n2{px,q^p\ + a,q2) = \(D2
l(S)-(/?,* + a ) ) ^ and

« / 2 / X J T

^ 2 (-Pi' #1 > P~> ^ 2 ) = I (^2~ (lS<) ~ i^2 )dS

o

Since by assumption p\ > p\ + a, ^"2(p,,^,,j^* + a,g2) > 7T2(p],q],p2,q2) and hence,

/2* is a better response to /,* than f2 contradicting the equilibrium property.

Case 2:\/p*2 e P2 ,p2 < p\-a.

The above condition implies that maxp{p : p e P2} =: pmax < p\ -a. In this case, it can

be argued proceeding along the above lines that bidder 1 can improve his expected profit

by moving the probability mass f\(p\9q\)to the point (pmax,qx) in response to bidder

2's strategy f2 contradicting the equilibrium property.
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Now, we present in the form of two propositions, how a pure strategy equilibrium should

look if it exists.

Proposition 2.3 Let (p\*q\*p\>q\)te a Nash equilibrium in pure strategies. Then the

following should hold.

* *(i) px = p2 or

(ii)(pt
],p

t
2) = (a,2a) or (2a,a)

* *Proof: From Proposition (2.2), it follows that p} -p2 <a. Hence, only the following

three possible cases can occur in equilibrium in our discrete model.

p\ = /?* or/?,* = p\ +a or/?* = p\ -a. — (8)

Suppose p\ >2a. In this case, we show that player l 's best response to player 2

cannot have a price component p\ = p\ -a . Using a symmetric argument, one can show

that if ,/?* > 2a,player 2's best response on price cannot be pi -a. In view of (8)

above, it follows that if any player quotes a price p > 2a, then the other player also

should quote the same price p in his strategy.

Now consider the case when p\ > 2a. In this case, we show that p\ - a cannot be a best

response of Player 1. First, note that

(s)-( p\ -a))ds

\{D~x\s)-a)ds
0

j(D;l(s)-a)ds
0
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if (q\ A N~q*2) * 0. Hence (a,Dl (a)) is a better strategy than (p*2 -a,q\)

whenever the term(q*{ AN -q*2) contradicting the equlibrium property. In the case

when (q\ /\N-q*2) = 0, since q\>p>0, it follows that q\ = N. But in such a

scenerio, player 2 can in fact improve his profit by using the strategy (2a, N) in stead

of (p*2,N).

Thus, if either pi > 2a or p\ > 2a, then it follows from (8) that, p*} = p\ should

hold always.

In the case when pi < 2a or p*2 <2a, then it follows that one of the above two

conditions (i) and (ii) should hold by our discreteness assumption on price grid.

Hence the proof.

Proposition 2.4 Let (p, ,g, ,p2^q2) *s a Nash equilibrium in pure strategies. Then

Proof: From Proposition (2.3), it follows that p*x = p2 or (pi, p\) = (a,2d) or

((2a,a).

In the cases when (i) pi = p\-a or (ii) /?* = <z(2a) and p\ = 2a(a ) , the result is

from our assumption on demand functions.

Consider the case when p*x = p\ > a. Assume that Dx (p*x) + D2 (p*2 )<N. Then the

quantity components of equilibrium strategy should be q*x = Dx (p*x) and

q\ = D2 (p*x ) . But then, player 1 (or player 2) can get the same quantity with a lower

price component and improve his pay-off: that is, for player 1, (a, Dx (pi)) is a better

strategy than (p\,Dx(p\) )against player 2's strategy (p*2,D2(p*2) )( and a similar
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statement holds for player 2 also) contradicting the equilibrium property of

(Pi ><h>Pi><h)- Hence the proof.

Since it is fairly difficult to derive conditions under which equilibrium in pure

strategies exist, in the following we depart from game theoretic analysis and analyse

the Dutch auction problem as a single agent learning in uncertain environments. We

present below two independent models for Internet-based Dutch auctions and provide

details of various learning procedures.

3. A Dutch Auction when Bidders cannot Observe Dynamics

Consider a decreasing type Dutch auction over a fixed duration T where Q identical units of an

item are auctioned out for sale. Bidders who arrive before Twill observe the ongoing price and

decide on whether to purchase the items at the offered price or to revisit the system after a

random duration.

To make our model realistic, we assume that the auctioneer decides on price-setting only at a

prespecified decision epochs, 0 = t0 < / , < . . < tN — T . For notational simplicity, we use

3 := {0,1,2.., TV} to denote the set of decision epochs. Demand observed between two successive

decision epochs is the aggregated demand from all the bids that occur during that specific

decision interval.

Let the auctioneer begin the auction by asking an initial price, say, Po and at a decision epoch,

/ G 3 decides to choose a price decrement action at from a finite set of available actions,

A := {a ' ,c / 2 , . . . . , a u }. An action at~ a1 is interpreted as decreasing the current offered price

by an amount aJ or equivalently, setting the ongoing price at time t,Pt at Pt —a1 and holding

the price at that level until the next decision epoch / + 1. State of the auction at any time t, is

represented by a pair: x, =: (q* P) where q is the remaining quantity for sale at time t and P is

the offered price at time / . We use S to denote the state space. The action at in state xt results
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possibly in a change in the state of the auction which is assumed to follow the probabilistic

transition structure defined by:

Pr(x,+1 =y\x,=x,a, = a;x,_1,a,_,,..,x0,a0)

= ^ »

Observe that the above conditional probability law follows Markovian evolution. This follows

since if a bidder upon his arrival cannot get information regarding quantity sold upto his arrival

epoch and also if information regarding other successful bids is hidden, then it follows that his

bidding behaviour is only dependent on his own private value for the item and his own demand-

price function which will possibly vary with time. Hence the above non-stationary Markovian

transition law captures the evolution of the auction in such a scenario fairly well.

Also, a price setting action by the auctioneer will result in an immediate reward amounting to

revenue earned from sale of items happeing during the interval (/, t +1]. At t =*N (= T ) the

auction ends and the rewards accumulate at the end of next time unit say, N + 1 . Formally, we

can say that all the actions taken at N 4-1 will lead to a zero reward.

Let r, := r(x,, a, y , ) denote the immediate reward that accumulates over two successive decision

epochs (tj +1] and is given by

-a) where x = (^1,i
>

1) and y = (# 2 ,P 2) .

With the above notation, the following Markov decision process model is in order:

A (non-stationary Markovian) deterministic policy n is an associative mapping:

7r:{t,x)^7t{t,x) (1)

which associates with each time - state pair an admissible action from Ax c: A.

Note that by the nature of our decreasing type model set of admissible actions in any state

x = (q,P) should be such that the price set thereon should lie within [R,P] where R is the

seller's reserve price. Thus, available action set is state dependent. Let I I denote the collection

of such Markovian deterministic polices. By the finiteness assumption on admissible actions, I I

is of finite cardinality.

Associated with every such policy K is a value function:

21



/=0

where En is the expectation operator under the policy n. Similarly we can define at any time k,

the total expected reward from time k on if policy n is being followed, is denoted by

i
t=k

with V"(x) = V0'(x)

Let V*k (x) = max^pj F / (x). Then V[ satisfies the following dynamic programming equations:

V; (x) = m a x ^ { £ Px; [r(x, a, y) + V^ (y)]}

Vx,yeS,*e{O,l , . . , t f} (3)

with F;+1(x) = 0,Vx

If we denote by Qk (x,a) the term inside the braces in (3), it follows that

V*k(x) = max f le^ Qk(*,a) and

n\ (x) = arg maxfl Qk (x, cr) (4)

O^ (x, a) represents the expected reward earned by following action a in state xat time A: and

proceeding optimally from time k 4-1 onwards.

Note that if the probability structure is known , then (3) can be solved using Backward Induction.

Since the immediate rewards are bounded and at any time, depend on the history only through the

current state and action and also since the probability of transitions depend only on current state

and action an optimal Markovian deterministic policy exists and an optimal policy in Fl can be

derived from (4).

When the probability structure is not known apriori, Reinforcement Learning in MDPs can be

invoked to learn an optimal Markovian determinstic policy. The procedure is detailed in the next

section.
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2.2 Q-learning for Optimal Policy

Reinforcement Learning algorithms take a stochastic approximation approach to solve the

Dynamic Programming equations that appear in MDPs. Instead of attempting to build the

underlying MDP model and then solve the problem using Backward Induction, these algorithms

take advantage of underlying dynamic Markovian behaviour and directly learn optimal policies

using iterated observations of rewards and state transitions.

Powerful convergence results have been established for many Reinforcement Learning algorithms

in the Markovian setting. A majority of these algorithms address infinite horizon stationary

problems. However, the Dutch auction model described above does not directly fall under the

purview of these algorithms by virtue of the non-stationarity and finite horizon nature of the

problem. In order to pose the problem in the traditional infinite horizon setting, we suggest the

following transformation to our model. Following Bertsekas [1995], we convert our non-

stationary finite horizon problem into an equivalent stationary problem by considering time

component as part of the state: The new state space will now be S : = 3 x S . Further , in

S identify a reward free absorbing set, So. A state s = (t,x),t € 3,x e Sis in Soif either

/ = N +1 or x = (0, P) for any P < Po. The motivation underlying this transformation is that the

Dutch auction ends either when the stipulated end period is reached (possibly with a full or partial

sale of items in the inventory) or when all the quantity is sold out. For space reasons and also

since it is fairly a simple exercise, we do not reformulate the model with the suggested

transformation.

Further, note that it is not possible to directly invoke learning mechanism in our case since the

sample paths (auction traces) terminate before or at N + land learning requires repeated

occurrence of all the states. In order to be able to learn, we suggest that whenever the auction

enters the absorbing set So, a new sample path is initiated from state x0 = (Q9P0)9 that is, the

same starting state is used for all sample paths. This can be viewed as learning from different

complete auction traces that are stitched together to form an infinite horizon sample trace. For

online learning, this is a realistic framework when the auctioneer repeatedly conducts such Dutch

auction with the same start inventory and start prices or when the auctioneer can categorize

auctions happening at his site according to some similarity features and then uses proper

normalization to make them qualify as exactly similar auctions. Discussion on such classification
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is beyond the scope of this paper. For offline purposes, the auctioneer can always simulate a

Dutch auction and start an actual auction with the simulated experience. In fact in Section 5, we

devise a simulation experiment using some realistic models of bidders and their strategies.

Q-learning is an RL algorithm which iteratively generates ^ (x , r̂) values described in (3) for

each state-action pair (x, a) using online or simulated experience. The algorithm proceeds as

follows: At each iteration n, it updates the estimation Qnof (2from the current observations

(x,,,a / f,y ;},r(xH?a / J?y / /))obtained from actual execution of action an'm x / ;in an online or

simulated experiment and replacing the conditional average appearing in (3) by evaluation of the

actual transition. It moves only incrementally in the desired direction by taking a weighted linear

combination of previous estimate and the value suggested by current observation to ensure

stability of updating procedure. For details of the Q-learning procedure see Bertsekas and

Tsitsiklis [1996] or Sutton and Barto [1998].

For the Dutch auction problem, the Q-learning algorithm is as follows:

Algorithm

Initialize Q(x,a)for all x e S and as A~to zero value.

For n > 0, observe (xw 9aH ,y n ,r (x,, ,y„)). Let / = nmod(N +1)

Update Q-value estimates by:

QH+] (x, a) = Qn (x, a) + /?„ (x, a) A „ ~ (5)

where A;J is given by:

= rn + max, Qn (y„,b) - Qn (x,a), if (x, a) = (x;,, an) and / < N

= rH-QH(x,a), if (\,a) = (x,,,a,,)and / = N

= 0 , otherwise

Further, set x,l+1 =y , , i f XH g So and xn+1 = X 0 , otherwise. The learning parameters /?,,(x,tf)are

small learning rates decreasing with time.
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Theorem 2.1: If each pair (xya)GSis visited infinitely often and if

X ' a ) <°° ' t h e n Q,,(*>a) -> fi(x,fl)V(x,«) e 5

Since proof of convergence follows from a straight forward application of stochastic

approximation algorithms , we omit details.

The above procedure ensures convergence only in the Markovian setting. However, when a

bidder upon her arrival can see the available quantity and also the successful bidders, then her

bidding behaviour is dependent on the history of the auction. Hence the auction state transitions

are affected by bidders' strategies over time. In such cases, one needs to relook at the above

model. In the next section, we try to address the performance of direct temporal difference based

Reinforcement Learning algorithms such as 1-step Q-learning discussed above in such non-

Markovian domains and contrast them with the trace based mechanisms which are essentially

Monte-Carlo based actual return algorithms.

4. A Dutch Auction when Bidders can Observe Dynamics

Consider the decreasing type Dutch auction described in the foregoing in a setting where any

bidder can have access to information pertaining to quantity available at any time and can have

knowledge of successful bids or in general, can observe dynamics of the auction. In such cases, a

bidder plays a strategic game and will possibly derive positive utility by playing odds at the

gambling table or a bidder may update his maximum willingness to pay or more generally re-

evaluate his price-demand function. In such cases, auction state of our macroscopic model

described in the previous case will not in general evolve in a Markovian fashion. The evolution is

dictated by the bidding behavior of the participants, which invariably is linked to history of

dynamics. Hence, the conditional law with respect to complete history is needed to decide on

optimal price control strategy.

Even though there is an empirical evidence that direct application of RL algorithms developed

specifically for Markovian environment can even work well in some particular non-Markovian
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cases [Barto et al, 1983], there is no characterization of such cases as yet. Singh et al [1994]

analyze the implications of direct RL in non-Markovian cases and in general POMDPs and show

that RL algorithms do not degrade gracefully with the degree of non-Markovianness.

The state (Remaining Quantity, Offered Price) used in the previous section can be regarded as an

observation of a hidden state, which evolves in a Markovian fashion. In our Dutch auction model,

without loss of generality we assume that at any decision epoch history up to that point is enough

to disambiguate observations. In other words, if the complete history or trace of the auction is

known, then one can identify states, which evolve in a Markovian fashion. A simple plausible

way to handle this is to include history as part of the state space and invoke Q-learning

algorithms. But it will turn out to be computationally expensive because of state space explosion.

Further, it may even happen that not all states are visited during exploration phase leading to

learning algorithm stabilizing on sub-optimal decisions. Instead, using the fact that history is

enough to disambiguate observations, we retain the original state space developed in the previous

section and accordingly define Q-values using conditional arguments. Even though the (price,

quantity) pairs qualify only as observations, (following the terminology of POMDPs) in the

following discussion, for the sake of clarity and continuity we refer to them as states only.

In the next section, we present a few examples to show that in a non-Markovian Dutch auction

model Temporal Difference based learning methods may fail to learn optimal policies even in

cases where deterministic observation based optimal policies exist. But actual-return or trace-

based learning algorithms (of Monte-Carlo type) will successfully be able to learn such policies

in the discussed model. We make these notions precise in the sequel.

4.1 Temporal Difference Vs Actual Return based Learning in a non-Markovian

Dutch Auction

We construct two illustrative examples that expose some inadequacies of a direct application Q-

learning in a non-Markovian Dutch auction.

Assume that a Dutch auction starts with an initial inventory 50 at a price level 100. Now, consider

three states x I 5 x 2 , x 3 representing the tuple - (remaining time, remaining quantity, offered

price)= - as depicted in Figure I below.

State is described according modified representation presented in Section 2.1
but for the difference that remaining time replaces the original time
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Figure 1

Assume that action a in state x1 leads to x3 with a positive probability px and action b in state

x2 leads to state x3 with a positive probability p2. The expected payoff from state x3 following

action c(zero decrement or not changing the ongoing price) is dependent on its predecessor

states. If the predecessor is Xj, then suppose that this expected payoff is/?, where as, if the

predecessor is x2 then the expected pay-off from x3 following action c is R2 which is orders of

magnitudes less than Rx. Recall that Q-value of a state-action pair (x, a) refers to expected

utility gained from taking action a instate x and proceeding optimally from then on. Given that

the state x3 is reached assume that with a high probability transition must have occurred from

x1. In this case, the auctioneer may consider c to be a profitable action in state x3 . Now if one

were to calculate the Q-value for the state-action pair (x3 ,c) , then the above expected payoffs

need to be unconditioned on history and for ease of argument assume that payoff for (x3 ,c) does

not depend on history beyond one step backwards, then it is easy to see that the unconditional

expected payoff for (x3 ?c) is approximately equal to px-Rx. Now assume that /^and p0 are

very high. In the former case last -minute frenzy is being observed; a phenomenon particularly

predominant in the Internet context, (See Roth and Ockenfels [2000].) where as in the latter case

auction can be viewed as progressing at a relatively smoother pace perhaps in a uniform way. In
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the light of these interpretations, the conditional rewards mentioned above for action c in x, also

make a realistic assumption.

However it is interesting to note that in the above scenario if Temporal Difference (TD) based

updates are used, the Q-value of (x-.c) will settle approximately at p] • R} and as a result action

b might even be considered to be performing well by the learning algorithm though the action

would always lead to degradation in the average returns from x2 on if the auctioneer's policy is

to select c in x3 . In a non-Markovian Dutch auction the informed buyers try to play a strategic

game based on observed dynamics which will affect the total expected revenue of the auctioneer.

This dependency of bidders' strategies on previously observed dynamics will have a certain

biasing affect on future expected revenues and any RL agent who uses TD based Q-learning

updates fails to observe such phenomenon.

The example above has been presented in a very simplified framework with one-step history. The

argument can be extended to cases where dependency goes up to the starting point in time.

Now in stead of the TD based Q-value of update (as suggested in (5)) suppose we use the

following actual return based update for Q-values: Let x = (t,q,P) be the state at time t. Also

let n be be policy followed from time t on and r be the number of time steps from t on

to reach the absorbing set *S0. (Note that r < N a.s by our construction).

0W+I (x,a) <- (1 - pn )Qn (x,a) + /?„ (x,a)An -- (6)

where A/; is given by

where /; is the actual immediate return at time step i.

In other words, the update rule (6) is applied only when a termination state is

reached and only to the state- action pairs for which no non-policy actions executed

subsequently.

In the above discussed case, if the auctioneer or his agent uses an update rule for Q-values based

on actual returns, the agent will in a few iterations would learn that action b is less rewarding

than the values derived from Temporal Difference based Q-value updates.
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Next we illustrate with an example that in general Temporal Difference based methods may even

fail to learn optimal deterministic observation based policies in our non-Markovian Dutch

auction.

Consider the dynamics of a Dutch action as shown in Figure 2. Assume that the initial inventory

and the start price are as in the previous example. In addition, assume that seller's reserve price

is 60.

Figure 2

In state x{9 assume that the two actions ao,a{ lead to states x 4 ?x 2 respectively with high

positive probabilities (pl
O9p\ respectively as indicated). In the other states, the actions and the

corresponding probabilities are depicted in the figure. Note that, as in the previous example case,

the expected profit from state x4 for the action c will be i?j > 0

(in equivalent terms, will lead with probability one to x'5) conditional upon its predecessor state

being x2 and action followed there being a0. The same action, c can also lead to x5 with zero

reward if the predecessor is x3 and the action followed is b . Also, consider another path from

the state x1 that terminates in state x"5 with positive probability via x2 as shown in the figure.
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States X5,x'5 and x" belong to the reward free absorbing set So (see Section 2.2) indicating the

terminal stage of the auction.

A realistic way to interpret the above dynamics is as follows: When the remaining time to close

the auction is only two units, the auction state can be either Xj or x3 . The dynamics reflecting

transitions: x, —» x2 —> x" can be seen to result in a loss in expected revenue items (also loss

in a possible sale of few more items) which is a fall-out of a sub-optimal action ax in x,. A

simple way to explain the above phenomenon from x, is to interpret that a significant fraction of

the bidders who arrive (or who are already present when the state is Xj) during the last phase

have a per unit valuation (or their updated estimates) around 60 (below 80) which is also the

reserve price of the seller.

Now consider the case where both the states x, and x3are equi-probable. (With a suitable

modification, the analysis can be extended to cases where these probabilities are arbitrary)

Assume that dependencies of rewards on histories do not go beyond one step as in the earlier

example. It is easy to see that for any policy n, QK ( x4 , c) equals — pl
0* Rx.

Now, let nx and n1 be two (observation- based) policies with the following partial assignments:

TT\ x, )= a09 nx ( x4)= cand TT\ X 3 ) = b:

7V2{ x])=al and TT2( \2)=d.

It follows that,

£ ' T l ( x ) ? a 0 ) = r (x P f l 0 , x 4 ) + j2(x4.c)

and

6>T"( x,, 0 l) = /-(x I ,<vx2) + 0(x2 ,<i)

It is possible to identify cases where the values for p\,p\ (recall that both are assumed to have

high values as per discussion above) are such that Q~ ( x1 9a0) < Qr ( x, ,al). (A simple case

is with p\ = p\ = 1 ). Hence the one-step Q-learning always picks up action ax in state x, even
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though a0 gives improved performance. Since in the learning phase, weighted linear

combinations are used, there is no way that the 1-step Q-learning will learn the improved policy

Further note that, for the given set of actions shown in the figure, in fact KX is a deterministic

optimal observation- based policy in the simple case. This shows that the Q-learning sometimes

may fail to learn the deterministic optimal policies too in such non-Markovian domains.

Also, interestingly, if in stead of the 1-step Q-learning, actual return updates as suggested in (6)

are used to estimate the Q-values above, then action a0 is always selected in the simple cases

referred to above. Also the above argument can be extended to show that any learning rule that

uses TD(/L),0 < X < 1, type of updates cannot learn the optimal policy nx since the methods

underlying also use some form of weighted linear combination of corrected truncated returns.

For a formal treatment of the above discussion, see Ravikumar and Manish Gupta [2001]

The above arguments allow us to infer that Temporal Difference based methods in general do not

converge to optimal deterministic strategies in non-Markovian Dutch auction domains. Since

actual return based methods offer superior performance in this context, we suggest that such

approaches (of TD(1) genre) be used in this case. Any suitable trace-based learning mechanism

may achieve this purpose. For such approaches, see Sutton and Barto [98].

However, actual return based approaches will, in general, be inefficient with regard to

implementation and also in terms of speed of convergence. Hence this fact throws open two

possible options for learning. The first option is to convert the problem into a Markovian

framework by appending in a suitable form all the information that is deemed to be relevant in

converting the problem to an MDP and then invoke the simple 1-step Q-learning rule. The second

option is to retain the original state space (of the previous sections) and develop efficient trace-

based mechanisms to improve speed of convergence.

In Partially Observable domains, Singh et al [1994] and Jaakkola et al [1995] argue that

randomized policies may perform consistently better than deterministic polices. Recent

developments in actor-critic algorithms (Konda and Borkar [2000]) can give a cue on learning

such randomized strategies. We address some of these issues in our future work.

31



5. Design of Simulation Experiment

The purpose of this simulation study is two fold. Firstly, we design a realistic simulation

experiment to validate our analysis of the foregoing sections. Secondh. if the auctioneer has a

good model of the auction in terms of the bidders' strategic behavior and their price-demand

variational functions, learning algorithms can be run on these simulated models whenever it is

very hard to find out optimal policy. The latter case may arise in situations where the state space

is formidably large or in the cases where Backward Induction in computationally expensive. In

the presence of model, auctioneer can experiment with simulations to train the learning system in

an offline manner and can use the offline experience in the actual auction. In such a scenario, our

simulation experiment designed below can provide insights in developing an experiment that suits

the purpose of the auctioneer. With this motivation behind, we present in the following, our

simulation procedure.

We assume that the auctioneer has knowledge of the market price, say C of the item currently

being auctioned. In the absence of such knowledge, the auctioneer can de\elop/use a shopbot

(See Kephart and Tesauro 1999] discover the current market price of the item. Further, since

geographically different consumers participate in the auction, we assume that initially each

consumer values the item independently and we assume all bidders are symmetric on their first

visit to the auction site and draw their valuations randomly from a uniform distribution over

[0,C]. We used uniform distribution mainly for reasons of analytical tractability and also since it

always has finite support. The upper-limit is justified since buyers can as well use a shopbot

before they enter the auction to know about the prevailing market price. In our simulation

experiment, we allow each bidder to update later their upper-limit as auction progresses.

The bidders are classified into two categories. The Category 1 bidders (referred to as definitive

bidders henceforth) are risk averse in the sense that if the current going price of the item is found

to be below their valuation, they will immediately call a halt and buy a unit of the item. On the

contrary, the Category 2 bidders will wait for the price to fall further below their valuation, the

duration being dependent on their estimation of competitive dynamics. So in the simulation

experimentation, a fixed proportion of the bidders have been assumed to belong to Category 1. (If

there is a statistical way to identify such bidders, the relative proportions can be estimated from

actual data and can be used in simulation)
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A bidder belonging to Category 1 will bid immediately (with probability 1) when the going price

at his time of arrival is below his valuation of the item. If not, he will revisit the site (or may even

place a (zero)-intelligent agent at the auctioneer's site). In contrast, a bidder of Category 2 will

observe the ongoing price and waits for a duration and revisits the site at regular intervals to

watch the competitive dynamics in order to estimate the rate of purchase of items. He then uses

this estimate to find out the expected number of visitors in the remaining course of auction

according to the observed rate and bids probabilistically. In our simulation, we use Bernoulli

distribution, with success probability/? as a function of his estimated valuation of other bidders,

the quantity remaining in the inventory and the expected number of arrivals. In fact, the

procedure involved in deriving the parameter for non-definitive bidders, in a simple case where

every bidder approaches auction with unit demand and every bidder knows this fact, is as follows:

Whenever a bidder has to choose an option of bidding at that hour , he observes the current

remaining quantity, say q and accordingly finds the existing rate of inventory movement.

Further, he uses this estimate to compute the future expected demand until the end of the auction.

By our unit demand assumption, this is equivalent to N the number of future arrivals.

He uses this information, to find out the probability that q — th order statistic in N uniformly

distributed valuations over [0,C] exceeds the current offered price. This probability is used as

success probability in the above mentioned case. In the general framework, since it is fairly hard

to replicate this procedure, we allow each bidder to make a random guess on the future demand

and to use this in deciding on his bidding probability. Note that, in the presence of only Category

1 bidders, the simulation provides an approximately Markovian environment where as in the

presence of a mix of categories, it provides a non-Markovian environment.

In our simulation studies, we experimented with some simple cases where all the bidders are

assumed to be of Category 1 and further, optimal policy can be found explicitly. In many of these

cases, the Q-learning algorithm converges to optimal policy in a few iterations. In the general

case which includes a mix of definitive and non-definitive bidders, we use a trace based

mechanism to update Q-values. That is, a policy is followed through out until the absorbing set is

reached and then Q-values of the visited states and actions are updated based on actual return

received as in (6). In terms of average performance which measures average expected returns

over a sequence of auction traces, the above trace-based procedure has consistently out-

performed ordinary one-step Q-learning algorithm supporting our intuition. However, our
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simulation experiments are still in progress and a thorough and comprehensive study needs to be

carried out for additional insights.

6.Future Research

In this paper we analyzed applicability of Reinforcement Learning algorithms for price control

in a Dutch auction in two independent cases where bidders can and cannot observe auction

dynamics. Even though, the learning algorithms suggested are simple, our table look-up based

approaches may turn out to be computationally expensive both for on-line and off-line learning as

the state-space grows. For off-line learning extensive simulation studies are required including

models of buyers and their demand patterns. For online learning, even though no such models are

required per se, the learner or auctioneer must endure losses during the exploration phase of the

learning procedure. In view of these facts, there is need for development of function

approximation techniques that can expedite the learning process.

In the case of non-Markovian Dutch auction the learning problem is similar to learning in

Partially Observable Markovian domains. In such domains, since randomized strategies can

outperform deterministic counter parts, there is a need for development of algorithms that can

learn such mixed strategies.

Another interesting plausible extension to our work is to analyze a situation where intrinsic value

of items decreases with time during the course of the auction.

7. Conclusions

In this work, we have investigated application of Reinforcement Learning for price control in a

Dutch auction. In the case when the auctioneer conceals information pertaining to ongoing

dynamics of the auction from bidders, we proposed a Q-learning algorithm for generating an

optimal price sequence that maximizes seller's expected revenue. In the case when bidders can

observe the dynamics of the auction, we have shown that actual-return based Reinforcement

Learning algorithms perform well compared to the Temporal Difference based algorithms.
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From an implementation perspective since Reinforcement Learning offers a simple adaptive

control framework, we hope that scope of its application will further extend to electronic

marketplaces where autonomous agents play an active role in decision- making.
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