
A Note on the Multi-Component Deterministic
Opportunistic Replacement

By

AJCRao
MLR- Rao

May 1996

Please address all correspondence to:

AJK Rao /M R Rao
Professor
Indian Institute of Management
Bannerghatta Road
Bangalore 560 076
India

Fax (080)6644050

A Note on the Multi-Component Deterministic
Opportunistic Replacement

by

A.K. Rao
M.R. Rao

Indian Institute of Management Bangalore

Abstract

Researchers in the past dealt with the optimization problem

relating to deterministic opportunistic replacement problem.

Complete solutions were obtained for a two component situation

for both finite and infinite time horizon. For the multi-

component opportunistic replacements with fixed time horizon,

a mixed integer linear programming formulation is given in the

literature. In this paper, an alternative approach to solving

the two-component problem is given. A Dyanamic Programming

approach to solve the two-component problem which can be

extended to K-component situation is also discussed. The mixed

integer programming formulation is modified and compututaional

advantages are dicussed.

A Note on the Multi-Component Deterministic
Opportunistic Replacement

by

A.K. Rao
M-R. Rap

Indian Institute of Management Bangalore

1- INTRODUCTION

Earlier researchers dealt with the problem of

Multi-Component Deterministic Opportunistic Replacement

Problem [6]. The problem was originally introduced by

Jorgenson and Radner [8] for stochastically failing

components which incur extensive maintenance cost upon

failure. An extension of the problem was studied by

Epstein and Wilamowsky [3,4,5,6]. A new variation of

the problem was introduced by George et.al [7] . They

considered a purely deterministic opportunistic

replacement problem. Epstein and Wilamowsky [6] made

an analysis of the two component deterministic problem.

They showed that for a two component problem with

different life-limits, each individual scheduled

replacement point offers potential opportunity for

monetary saving. They proved that in this deterministic

situation, only a limited number of the possible

replacement points need be considered. An algorithm to

generate these points was also given. Dickman, Epstein

and Wilamowsky [1] presented a mixed integer linear

programming formulation for any n-component system.

However, the problem size becomes large.

In this paper, an alternative method for finding the

1

optimal replacement point is given. A dynamic programming

formulation of the problem for a two component situation

is given. This can easily be extended to K-component

problem.

PROBLEM FORMULATION FOR A 2 COMPONENT SITUATION

The formulation is as per [6] with slight modification.

Let us denote the two components by A and B.

Let

LA : Assigned life limit for component A

LB : Assigned life limit for component B

Assume that LA < LB .

Let L * L.C.M of (LA , L») and

NA = L/LB and NB = L/LA.

Then, NA and NB are relatively prime. aAlso,

Total cycle time = L

No. of A's in cycle = NB

No. of B's jln cycle = NA

Total No. of replacement points = NA + NB- 1.

Let r be a positve integer such that

r LA < l^ < (r+i) LA.

Let

CA : Cost of replacing a single A

CB : Cost of replacing a single B
C : Cost of disassembly for single or double

replacement

x : No. of A's used from the start of the
cycle (1 < x <NB)

y : No. of B's used from the start of the
cycle(1 < y < NA)

ATX : Time differential between the x'th A and
the next B, (1 < AT, < I*)

ATy : Time differential between the y'th B and
the next A, (1 < ATy < LA)

fi(x): the y value that immediately follows x and
equal to (x LA + AT*) / L»

f2(y): the x value that immediately follows y and
equal to (y LB+ ATy) / LA

C(x) : cost per unit time for a double removal at
x'th A and equal to

(x CA + f,(x) CB + [x + f,(x) - 1] C)/x LA

C(y) : cost per unit time for a double removal at
y'th B and equal to

(7 CB + fa(y) CA + [y + f2(y) - 1] C)/y I*

Since every double removal initiates an identical cycle,

the replacement point yielding the minimum cost per unit

time within a single cycle is the optimal replacement

point and determines the overall cost per unit time for

the entire system. The objective is to find the x or y

that yields the minimum of all possible C(x) and C(y)

values. Epstein and Wilamowsky [6] detailed a method of

reducing the number of possible optimal points and arrive

at the optimal by comparing the costs at these possible

optimal points. An alternative method of solutionf which

seems simpler, is given below.

3. ALTERNATIVE METHOD OF SOLUTION

We first find the condition for local optimum for C(x)

and then find the condition for global optimum. Similar

procedure will be followed for finding the condition for

global optimum for C(y). The minimum of these two global

optimums will give the optimum for the problem.

The cost function C(x) is

(x CA + fx(x) CB + [x + fx(x) - 1] C) / x LA

= ((C+CA)/LA) + P(x) where

P(x) = ((C+CB)/LA) (fx(x)/x) - (C/LA) /x

For any integer x, let us define an integer K(x) such

that the following inequality is satisfied:

(K(x) - l) LB< x LA < K(x) I*

It is obvious that K(x) = fx(x). Thus,

P(x) = ((C+CB)/LA) (K(x)/x) - (C/LA) / x

For any local optimal x,

P(x+i) - p(x) > 0 and

P(x-l) - P(x) > 0.

- P (X) ^ X>" W p / r J ^ V A T I ; _ K (X) -I _ C r 1 _1^'

L A x + l x LA x + l X

C + C o [xK(x+l)-~
LAx(x+l)

 w 7 % ' C+CB
4

ZO if x K(x+1) -(x+l) K(x) zQ

(Since x and K(x) are integers and C/(C+cB) is positive

and less than 1).

Similarly, it follows that

P(x-l) -P(x> ̂ {°*CB) [K (X ; 1) -*i*L] -^- [-L.-1]
LA x~l x LA x~l X

LAx(x-l)
 l x ' x ' x ' C+CB

iO if X K(X-1) -(X-l) K(X) 2:1

Thus for local optimum , x should satisfy

x K(x+1) - (x+1) K(x) > 0 (1)

x K(x-l) - (x-1) K(x) > 1. (2)

Mote: Obviously, K(x+l) > K(x) and

{ K(x+1) -K(x) > I*< L».

Hence, 0 < K(x+1) - K(x) < 1.

Substituting x-l for x, we get

0 < K(x) - K(x-l) < 1.

Result 1:

If x is a local optimum, then K(x+l) * K(x) + 1.

Proofs

Suppose for a local optimum x , K(x+1) - K(x). Then,

condition (1) becomes

x K(x) - <x+l) K(x) > 0

i.e. - K(x) > 0 which cannot happen as LA < 1*. Hence,

K(x-t-l) = K(x) + l. (3)

Result: 2:

If x is a local optimal, then K(x-l) = K(x).

Proof:

Suppose for a local optimum x, K(x-i) - K(x)-l. Then,

condition (2) becomes

x (K(x)-l) - (x-l) K(x) > 1

i.e. - x + K(x) Z 1.

But, (K(x) - 1) I»< X LA < x I*

Hence, - x + K (x) < l , which is a contradiction. Thus,

K(x-l) - K(X). (4)

These conditions for optimal x are diagrammatically

represented below:

(K(X)-1)LB K(X)L B (K(x)+1)LB

(X-1)LA xLA (x+l)LA

The global minimum for C(x) will be among the

A- replacement points x which satisfy the above

conditions.

Condition for global optimum of C(x):

Let xx and x2 be two local optimal for C(x) with xa < x2.

Then if C(xx) - C(x2) > 0# then obviously we can

drop point xx from consideration. This condition after

simplification reduces to

x2 KCx^ -x-jKCXg) c
C + CB

Similarly^ if

x2 K(xx) ~x1K(x2)

then# we can drop x2 from consideration of global optimal •

Thus, for any sequence of points x which satisfy the

condition

(K(X)-1)LB< <X-1) LA < x LA < K(x) LB< (x+1) LA

we need to compare the successive points x, the quantity#

(x2 K(Xi) - Xx K(x2))/(x2- Xi) with C/(C+CB) and then select

one of the points. This will lead us to the minimum of

C(x).

Similar analysis is done for the cost function C(y) as

shown below:

The cost function C(y) is

(Y CB + f2(y) CA + [y + f2(y) - 1] C) / y I*

- ((C + O / L B) + Q(y) where

Q(y) - ((C+CJ/L,,) (fa(y)/y) - (c/u) /y

For any integer y, let us define an integer L(y) such

that the following inequality is satisfied:

(L(y) - 1) LA < y LB< L(y) LA

It is obvious that L(y) = f2(y). Thus,

Q(y) = ((C+CA)/L,,) (L(y)/y) - (C/U) / y

For any local optimum x,

Q(y+1) - Q(y) > o and

Q(Y-l) - Q(y) > 0.

y+1 y 1^ y+1 y

C+CA"

iO if y L(y+l)-(y+l) L(y) iO

(Since y and L(y) are integers and C/(C+CA> is positive

and less than 1).

Similarly, it can be shown that

if y L(y-l)-(y-l) L(y)

T h u s for local optimum ,

* °
y

y L (y - D -

Mote: For any y , we have

{ L(y+D - i) Lx - *<*'
(L(v^ ' 1> L, > U , we have

L(y+D < L ^ y

.nee, L(y+11 can take on* of the values L(y)+ r

or L(y)+ r+ l.

Substtuting y-1 for y we conclude that L(y-l) can

take one of the values L(y) - r or L(y) - r - 1.

Result 3:

If y is a local optimum, then L(y+l) = L(y) + r + 1.

Proofi

suppose L(y+1) = L(y) + r.

Then condition (5) for local optiraality is

y { M y) + r } - (y+D M y) * °

i.e. y r - L(y) > 0.

But r < U/ L* . Hence

y r < y I*/ LA < L(y).

i.e. y r - L(y) < 0 and hence y cannot be a local

optimum.

Hence, L(y+1) « L(y) + r + 1.

8

Result 4:

If y is a local optimum, then L(y-l) = L(y) - r.

Proof:

Suppose L(y-l) = L(y) - r - !• Then condition (6) for

local optimum is

y (L(y) ~r~l} - (y-1) L(y) > 1

i . e . L(y) - (r+1) y > 1.

But r+1 > LB/ LA and hence

y (r+ l) > y LB/LA > { L(y) - 1} LA / I* = L(y) - 1.

i.e. L(y) - (r+1) y < 1 which is a contradiction.

Hence, L(y-l) = L(y) - r.

The global minimum for C(y) will be among the

B - replacement points y which satisfy the above

conditions.

Condition for global optimum of C(y):

Let yx and y2 be two local optimal for C(y) with yx < y2.

Then if C(ya) - C(y3) > 0, we can drop point yx from

consideration. This condition after simplification

reduces to

y2 L(yx)-yaL(y2) ^ c

Similarly, if

y2

we can drop y2 from consideration of global optimal.

Thus# for any sequence of points y which satisfy the

condition

(L(y)-r-l)LA < (y-l) L*< (L(y) ~r) LA <

(L(y)-l) LA < y LB< L(y) LA < (L(y)

we need to compare the successive points y, the quantity,

(y* L(yx) - y, L(ya))/(y2- y*) with C/(C+CA) and then select

one of the points. This will lead us to the global

minimum of C(y) •

The minimum of C(x) and C(y) is the optimal double

replacement point,

DYNAMIC PROGRAMMING FORMULATION

For a K component situation with a finite planning

horizon T, the problem can be formulated as a dynamic

programming problem* Assume that the revenue or cost

accrued from components which still have a useful life at

the end of the planning period T is 0* The approach to

Dynamic Programming formulation essentially remains the

same even if the revenue accrued is not 0.

Let the periods be numbered 1,2,3,...,T«

He will formulate a two component situation * This can

easily be extended to a K- component situation•

For a two component situation, let nx and n2 stand for the

elasped lives of components A and B at the end of a

period• In the Dynamic Programming formulation, the

stages are the periods and the states are the elapsed

lives of components A and B. At the end of any period, if

10

the elapsed lives of both the components are strictly

less than their useful lives, then we do not replace any

components* We replace one or both only when at least one

of the components reaches the end of its useful life.

Let us define

fj (nlf n2) = minimum cost of the optimum policy

when the system is in state (n1# n2)

and there are j more periods to go;

j = 0, 1, 2, • • • •, T»

The initial conditions are

fo (n1# n2) = 0 for all nx and n2.

The recursive equation is

f1+1 (nlf n2) « fi (n1+1, n2+1) if n, < LA and n2 < I*

=Min { C+ CA + fa (l#n2 + 1) , C + CA + CB

+ f - j C l , !)) i f nx = LA and n2 < LB

= Min { C+ CB + f̂ (n 1 + l # l) # C+ + CA + CB

+ f 3 (l # l) } i f nx < LA and n2 - La

- C + CA 4- CB + f j (1 , 1)

i f rxx ~ LA and n2 = LB

This formulation can be extended to a K-component

situation.

11

5. INTEGER PROGRAMMING FORMULATION

In order to formulate the problem as an integer

programming problem, the following notation is used:

Let K = number of components

T+l = number of periods

C} = cost of component j; j = 1,2,... ,K

Co = maintenance cost for replacing one or more
components

L̂ = life of component j; j = l,2,^.,K
assumed to be an integer

Define

X^ = 1 if component j is replaced in period i
0 otherwise

YA = 1 if there is any replacement in period i
= 0 otherwise

Now the integer programming formulation as given by

Dickman et al [1] is

K T T
Minimize 2 S ĉ X13 + s Co Y,

subject to

S Xkj > 1 ; i = 1#2,...,T - Lj +1
k=i j = 1,2,...# K

K
S X13 - n Yi < 0 ; i = 1,2,...# T (7)
j

Yi = 0 or 1 ; i = l , 2,..., T

XAj > 0 for all (i,j).

Some simplifications to this formulation are suggested in

[1]• For instance, there will be no replacement in

periods which are not non-negative integer linear

combinations of L-, ; j = l,2,...,K. For given instances of

12

the problem, this may reduce the number of variables and

constraints considerably. But as pointed out in [1], if K

= 3, Lx = 3, L2 = 4 and L3 = 5, then all periods from 3 to

T are potential replacement periods. In this case,

clearly X±j = 0, i = 1,2 and j = 1,2,3; X31 = 1;

Y3 = l. If T = 100, there will be , not including the

above fixed variables, 293 continuous variables, 97

integer 0-1 variables. In this case, there will be 385

constraints, not counting the redundant contraints.

Costraint set (7), together with the objective function

coeficient of Y± , is a compact way of ensuring that the

maintenance cost for replacement is incurred in period i

if any one of the components is replaced in that period.

But from a computational point of view, it is better to

replace constraint set (7) by

X±, - Y± < 0 ; i = 1,2,...,T (8)

3 = 1,2,...,K

This increases the number of constraints by (n-l)T. But,

these constraints are strong inequalities and the linear

programming bound obtained by using constraints (8) is

typically much better than the linear programming bound

obtained by using (7).

6. COHPUTIONAL RESULTS

Several finite time horizon problems were solved by

dynamic programming as well as by integer linear

programming. In all 42 problems were solved using dynamic

programming and 10 problems were solved using integer

13

linear programming.

Table 1 gives the objective function value and the time

in seconds for a 3 component situation. C is the cost of

disassembly for single, double and multiple replacement

and Cj is the cost of replacing a single component i;

i=l,2,3. Lj is the assigned life limit for the ith

component; 1=1,2,3. T stands for the time horizon.

Ten problems were solved by integer linear programming

using the formulation suggested by Dickman, Epstein, and

Wilamowky (DEW) and using our formulation (RR). The

software used was HYPER LINDO

Table 2(a) gives the approximate total time and the

number of pivots required to solve the problems by *ach

of the methods. Table 2(b) gives the optimal objective

function values. In addition, the same table gives the

number of pivots that were completed when the integer

solution that was obtained is actually optimal but not

certified to be so. As mentioned earlier, the total

number of pivots required to solve the entire problem is

given in Table 2(a).

Table 2(c) gives the objective function value (LP lower

bound) obtained by solving the linear programming

relaxation. In addition, the number of pivots required to

solve the LP relaxation is also given in the same Table.

Table 2(d) gives the objective function value of the best

integer solution (IP upper bound) found while solving

the LP problem. The same Table gives the number of pivots

completed when the best IP solution was found.

14

A study of the tables shows that the three component

problem can be solved efficiently by dynamic programming.

Our formulation of mixed integer programming is more

efficient than the DEW formulation.

15

Table 1

DYNAMIC PROGRAMMING : COMPUTATIONAL SUMMARY

LIVES OF COMPONENTS: Lx « 3, L2 • 4, L3 « 5.

P. No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ci

1

1

1

3

3

3

2

2

2

1

1

1

1

1

1

C2

2

2

2

1

1

1

3

3

3

2

2

2

2

2

2

c3

3

3

3

2

2

2

1

1

1

3

3

3

3

3

3

C

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

T

22

22

22

22

22

22

22

22

22

27

27

27

32

32

32

OBJ.
Value

64

52

34.5

68

57.5

39.5

69

58

38.5

81

66

42.5

96

78

52

TIME
(SEC)

25

25

25

25

25

25

25

25

30

30

30

30

35

35

35

16

Table 1 (Contd)

DYNAMIC PROGRAMMING : COMPUTATIONAL SUMMARY (CONTO)
LIVES OF COMPONENTS: I* « 3, L2 - 4, L3 = 5.

P.NO.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Ci

1

1

1

3

3

3

2

2

2

1

1

1

3

3

3

2

2

2

C2

2

2

2

1

1

1

3

3

3

2

2

2

1

1

1

3

3

3

c3

3

3

3

2

2

2

1

1

1

3

3

3

2

2

2

1

1

1

C

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

T

50

50

50

50

50

50

50

50

50

100

100

100

100

100

100

100

100

100

OBJ.
Value

155

126.5

83.5

160

136

93.5

160

136

91.5

315

256.5

169.5

328

278.5

191

329

279

188

TIME
(SEC)

40

40

40

40

40

40

40

40

40

80

80

80

80

80

80

80

80

80

17

Table 1 (Contd)

DYNAMIC PROGRAMMING : COMPUTATIONAL SUMMARY (CONTD)
LIVES OF COMPONENTS: L,. = 5, L2 = 6, L3 • 7.

P.No.

34

35

36

37

38

39

40

41

42

Ci

1

1

1

3

3

3

2

2

2

C2

2

2

2

1

1

1

3

3

3

c3

3

3

3

2

2

2

1

1

1

C

4

2.5

0.5

4

2.5

0.5

4

2.5

0.5

T

50

50

50

50

50

50

50

50

50

OBJ.
Value

95

79.5

54.5

97

82

59.5

96

81

58.5

TIME
(SEC)

105

105

105

105

105

105

105

105

105

18

Table 2(a)

INTEGER PROGRAMMING : COMPUTATIONAL SUMMARY
LIVES OF COMPONENTS: L, = 3, Lj = 4, L, = 5.

P.No.

1

2

3

4

10

11

12

13

14

15

1

1

1

3

1

1

1

1

1

1

C2

2

2

2

1

2

2

2

2

2

2

c3

3

3

3

2

3

3

3

3

3

3

C

4

2.5

0.5

4

4

2.5

0.5

4

2.5

0.5

T

22

22

22

22

27

27

27

32

32

32

D.E.W
TOTAL

TIME(MIN)
(PIVOTS)

34
(25843)

33
(29878)

12
(9931)

14
(12440)

> 150

R.R
TOTAL

TIME(MIN)
(PIVOTS)

2
(577)

3
(1135)

1
(410)

2
(739)

7
(3288)

10
(4223)

1
(349)

18
(5913)

20
(6599)

14
(4524)

19

Table 2(b)

INTEGER PROGRAMMING : COMPUTATIONAL SUMMARY
LIVES OF COMPONENTS: Lx = 3, L2 = 4, L3 = 5.

P. No.

1

2

3

4

10

11

12

13

14

15

1

1

1

3

1

1

1

1

1

1

C2

2

2

2

1

2

2

2

2

2

2

c3

3

3

3

2

3

3

3

3

3

3

C

4

2.5

0.5

4

4

2.5

0.5

4

2.5

0.5

T

22

22

22

22

27

27

27

32

32

32

D.E.W
OBJ.

VALUE
(PIVOTS)

64
(15889)

52
(10263)

34.5
(674)

68
(1239)

81
(15,587)

R.R
OBJ.

VALUE
(PIVOTS)

64
(247)

52
(674)

34.5
(235)

68
(106)

81
(886)

66
(468)

42.5
(257)

78
(603)

78
(603)

52
(2587)

20

Table 2(c)

INTEGER PROGRAMMING : COMPUTATIONAL SUMMARY
LIVES OF COMPONENTS: Lj * 3, L2 * 4, L3 = 5.

P. No.

1

2

3

4

10

11

12

13

14

15

Ci

1

1

1

3

1

1

1

1

1

1

C2

2

2

2

1

2

2

2

2

2

2

c3

3

3

3

2

3

3

3

3

3

3

C

4

2.5

0.5

4

4

2.5

0.5

4

2.5

0.5

T

22

22

22

22

27

27

27

32

32

32

D.E.W
LP LOWER
BOUND

(PIVOTS)

50.33
(79)

42.33
(79)

31.66
(78)

55.33
(72)

62.66
(106)

52.66
(102)

39.33
(114)

76
(112)

64
(121)

48
(1120

R.R
LP LOWER
BOUND

(PIVOTS)

59.33
(135)

48.33
(159)

33.66
(146)

64.5
(142)

73.33
(188)

59.83
(177)

41.83
(166)

87.25
(232)

71.33
(242)

50
(227)

21

Table 2(d)

INTEGER PROGRAMMING : COMPUTATIONAL SUMMARY (CONTD)
LIVES OF COMPONENTS: I* * 3, L2 » 4, L3 « 5.

P.No.

1

2

3

4

10

11

12

13

14

15

Ci

1

1

1

3

1

1

1

1

1

1

C2

2

2

2

1

2

2

2

2

2

2

3

3

3

2

3

3

3

3

3

3

C

4

2.5

0.5

4

4

2.5

0.5

4

2.5

0.5

T

22

22

22

22

27

27

27

32

32

32

D.E.W
IP UPPER
BOUND

(PIVOTS)

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

R.R
IP UPPER
BOUND

(PIVOTS)

71
(79)

56.5
(78)

36.5
(97)

68
(106)

88
(100)

68
(112)

46.5
(123)

98
(153)

86.5
(115)

53.5
(163)

22

REFERENCES

1. Bernard Dickman, S. Epstein and Y. Wilamowsky, A Mixed
Integer Linear Programming Formulation for Multi-
Component Deterministic Opportunistic Replacement,
OPSEARCH, Vol. 28, No. 3 (1991).

2. S. Epstein and Y. Wilamowsky, A Statistical Model for Jet
Engine Maintenance, Presented at the Annual Meeting of
the American Statistical Association, San Diego,
CA(1978).

3. S. Epstein and Y. Wilamowsky, A Heuristic - Dynamic
Programming Replacement Model, Presented at the Annual
Meeting of TIMS, Honolulu, HA(1979).

4. S. Epstein and Y. Wilamowsky. A Disk Replacement Policy
for Jet Engines, Ann.Soc.Logist.Engnrs. 5,35-36 (1980).

5. S. Epstein and Y. Wilamowsky, A Replacement Schedule for
Multicomponent Life - Limited parts, Naval Re. Logist,
Q.29, 685-692 (1982).

6. Epstein, S. and Y. Wilamowsky, Opportunistic Replacement
in a Deterministic Environment, Computers and Operation
Research, Vol 12, No. 3 ((1985).

7. L.L. George and J.A. Day, Opportunistic Replacement of
Fusion Power System Parts, Presented at Reliability and
Maintainability Symposium, Los Angeles, CA (1982).

8. Jorgenson D.W. and R. Radner, Optimal Replacement and
Inspection of Stochastically Failing Equipment, Rand,
Paper P-2074 (1960).

23

