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ABSTRACT

In the past, researchers presented a linear programming
formulation for the economic sizing of warehouses when
demand is highly seasonal and public warehouse space is
available on a monthly basis. The static model was
extended for the dynamic sizing problem in which the
warehouse size is allowed to change over time. By
applying simplex routine, the optimal size of the
warehouse to be constructed could be determined .In this
paper, it is shown that for the static model, the optimal
size could be determined more easily by calculating and
comparing the costs associated with only a few values for
the sizes of the private warehouse. The number of costs
to be calculated is equal to the number of time periods
in the planning horizon plus one. The dual of the dynamic
model is shown to be a network problem.

1. INTRODUCTION

Ballou [1] offered a method for determining the most economical

combination of private warehouse size and the public warehouse

space. Hung and Fisk [3] gave an alternative formulation for two

types of sizing problems - static and dynamic. They obtained

solutions for a sample problem for both types of situations using

UNIVAC FMPS. In this note, it is shown that the static problem

could be solved easily without using any standard linear

programming routines. The dynamic problem is shown to be the dual

of a network problem.
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2. REVIEW

Bailout's [1] formulation of the problem is given below:

Suppose the planning horizon consists of T periods. It is assumed

that the location for private warehouse is already determined. Any

amount of public warehouse space can be leased in any month t. For

each period t in the planning horizon, demands for the warehouse

space are estimated. Since future demands cannot be known with

certainty, the estimates are made according to pessimistic, most

likely, and optimistic projections. There can be more or fewer

estimates for each period. In general, it is assumed that there are

n estimates, and for each estimate the probability of occurence is

Pj , j = • 1,2,...,T and £j Pj fc 1.

Ballou showed that warehousing cost for period t can be computed

from the following formula:

C t j = Co X + Cv Ytj + Cp ( D t j - Ytj ) (1)

where

Ctj * warehousing cost in period t under demand estimate

schedule j;

Co = overheads and amortised capital expenditure per

sq.ft per period;

X = size of private warehouse, in sq.ft/

Cv = variable private warehousing cost, per sq.ft.

of storage per period;

Cp = variable public warehousing cost,per ft

of storage per period;
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Ytj = amount of private warehouse space used in period t,

under estimate j;

Dtj = demand for storage space, in ft2 in period t,

under estimate j.

It is also assumed that only a fraction f of the private warehouse

space can be used for stor&ge, so that:

Ytj = f X if Dtj > f X (2)

= Dt;J if Dtj < = fX

The total expected cost fot the planning horizon is:

EC - E . E P J C « (3)

t«i J-i

Thus the problem of sizing a private warehouse is to determine the

warehouse size X and the allocation of storage, Ytj's such that EC

is minimized.

A simple alternative to Ballou's method of finding optimal

warehouse size was given by Hung and Fisk [2]. They used linear

programming formulation. They first replace, for each demand

period t, the set of demand estimates and their corresponding

probabilities of occurrence with the expected value of demand Dt:

«1

Similarly, the amount of private warehouse space used in each

period t under estimate j is replaced by Yt, the expected value of

warehouse space used in period t.

The linear programming formulation developed for the static problem



i s as follows:

r
(P): Minimize EC * ]£ [ CQX+ CvYt + Cp (Dt- Yt) ] (4)

subject t o :

Yt Z £Xt fc«l,2, . . ., T (5)

Yt * Dt fc*l,2, . ..rr (6)

z ^ o ; rt fe o fc=i,2,...fr (7)

In this tnodel# the amount df Public warehouse space hired in month

t is (Dt -.. Yt) which can vatry from month to month.

3. ALTERNATIVE METHOD OF SOLUTION

By making the variable substitution S = f.X , we reformulate the

problem as follows:

r c

(Pl)i Minimize EC * J] [ ~| S+ CvYt+ Cp (Dt~ Yt) ] (8)

subject to:

Yt & S, t=lr2r • • • fT (9)

Yt & Dt fcal/2> *'.".# T (10)

sza, Yt * 0 t«i,2#.;.#r (11)

Each row of the constraints has at most two ones. If a row has two

ones, then one of them is +1 and the other is -1. So, the dual has

variables with at most two ones in each column. If a dual variable
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has two ones, then they are of opposite sign.

Remark: Dual of problem (P) is a network problem and hence can be

solved efficiently. However, as shown below, the problem can be

solved without applying network algorithm.

Assume that the optimal solution to problem (P) is

X = X* and Yt = Y*t for t = 1,2,...,T

so that the optimal solution to problem (PI) is

S = S* = f.X* and Yt = Y*t for t = 1,2,...,T.

CLAIM 1:

If Cp < Cv , then S* = 0.

This follows from the structure of the objective function.

We stiall assume that Cp > Cv .

CLAIM 2:

C
If Cp&Cv+—jr r then there exists an optimal solution with S*~0

Proof:

C
Suppose, Cp£Cv+-~~ , and S* is- positive*

Let Vo > { t ; 0- < Dt < S* }

Vx = { t ; Dt £ s* } and

V2 = { t ; Dt = 0 ^

Then, Ŷ  = Dt for t e Vo

= S* for t € Vi

= 0 for t e V2
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Let S = S* - AS* ,

Yt = Y*. • for t e Vo

= Y*. - AS* for t e Vi and

= Y; = 0 for t e V2

where AS* is a small positive quantity.

The values of S and Yt satisfy constraints (9) ,(10) and (11).

Let To, T
1! and T2 be the cardinalities of Vo, Vx and V2 respectively.

The objective function value will be greater than or equal to the

optimal value i.e.

ttv;

After simplification, this reduces to

Q
i.e. CPTXi —£

ox

But, since

it follows that



Cp^-jr+Cv and T= Tx

This impl ies To = T2 = 0.

Hence

S*<LMintDt

Now, set AS* = S* and we get another optimal solution with optimal

value of S = 0 and Yt = 0.

LEMMA : There exists an optimal solution to problem (P^ such that

either S = 0 or S = Dt for some t, t = 1,2,...,T.

Proof:

C
If Cp£Cv+-~, by Claim! , the lemma follows.

Q
Suppose Cp>Cv+—2-.

Assume that the optimal solution to the problem is:

S = S* and Yt = Y; for t = 1,2,...,T.

Suppose that S* > 0 and not equal to Dt for any t,

t = 1,2,...,T.

Define sets U:L and U2 such that

S* < Dt , for teux

S* > Dt , for teu2

Note that Ux and U2 cover the entire planning horizon.

Let Tx and T2 be the cardinalities of Ux and U2 respectively.



c
Since Cp> Cv+-j- , i t cqn be seen that

for any t in U1# Y* - S* and

for any t in U2, Y* = Dt

so that ^he optimal cost i s

(Dt-S*)+Cv]£ Dt
u1 uu2

After simplification,this cost is

Y; Dt (12)
ttU2

Let '

S= S* + AS* where AS* is a small change in the value of 5*.

Since S* > 0 and not equal to Dt for any t, t = 1,2,...,T, it

follows that for AS* sufficiently small, ( S* + AS* ) > 0 and not

equal to Dt for any t, t = 1,2, . . . ,T. Now, set

yt=± (S* + AS*) for te Ux

and

Yt = Dt tor te U2

The values of S and Yt satisfy the constraints (9), (10) and (11) .

The value of the objective function will now be:

ttUz



This simplifies to:

Now (13) - (12) gives

(14)

• C
jf _1 r+ (Cv-Cp) 2^ is not equal to 0, choose As*

as either positive or negative so that (14) is negative. This

contradicts the optimality of the solution S = S* and

Yt =,Yt for t = 1,2,...,T,

Hence

p Tx~ 0

Since

i t follows that Tx < T and T2 > 0.

Now choose

AS* = -Mi n [S*~Dt]
uu

Then, S* + AS* equals Dt ̂ r some t £ U2 and we have an alternate

optimal solution with S = S* + AS* . This completes the proof of the

lemma.
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Method of Solution

The optimal solution cŝ n be obtained by enumeration of (T+l)

possible values for S.These are S = 0 and S = Dt for

t = 1,2, 3, . . .,T. For each possible value, the corresponding values

of Yt , t = 1,2,...,T and the associated cost can be calculated. A

value of S that gives the least cost is an optimal solution.

Dynamic Warehouse Sizing Problem

The dynamic warehouse sizing problem as formulated by Hung and Fisk

is as follows:

Min

subject to

Yt - f Xt i 0 , t = 1,2, . . .,T.

Yt S D t , t = 1,2,...,T.

Xt - Xt.! - Wt + Zt = 0 , t = 1,2, . . .,T.

Xt, Yt, Wt, Zt ^ 0 , t = 1,2, .. .,T.

where

Xt = warehouse size in period t, Xo given

(Xt - X ^ r = Xt - Xt.j if Xt ^ Xf.!

= 0 otherwise

(Xt - Xt.i)- = Xt.x - Xt if Xt < Xt.x

= 0 otherwise

Wt = (Xt - Xt.x)
+ = amount of expansion in period t

2 :.= (Xt - Xt-.i)*" = amount of reduction in period t

Ce = per unit expansion cost in period t

d = per unit reduction cost in period t.
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The definition of other variables and costs remain the same

Let St = f Xt , Ut = f Wt and Vt = f Zt for t = 1,2,...,T.

Now the problem becomes

subject

St - S ^

S t /

t o

-

- u

Yt/

Min

Yt + S t

- Yt

t + V t =

u t, vt ;

T

* 0

* - D t ,

0

> 0 ,

8,'CSV,

t =

4— WO

4— —

1,

1 ,

1 ,

1 ,

2 ,

2,

2 ,

2 ,

. . . , T

• • • f X

• • • f X

... . , T

( 1 5 )

( 1 6 )

( 1 7 )

( 1 8 )

where So = f Xo which is given.

This is equivalent to

Min £ tco^ t+ce
fcc7 t+c> t+f (cY-cp) Yt]

subject to the same constraints.

Let at#. pt and yt, t = 1,2,.. .rT be the dual variables associated

with constraints (15), (16) and (17) respectively.

Now, the dual problem is

Max

subject to

-• .ttt - pt < f (Cv - Cp ) , t = lf2#...rT
i

at > yt -yt+1 < c0 ,-' t = l>2f...,T

- Yt S C^ , t = • 1 # 2 # ....:>T

Yt S C£ t t = 1/2, ...rT
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ott 2: 0, pt £ 0, yt unrestricted in sign, t = 1,2,...,T

The problem is equivalent to

T
\Jt *% »^ r ^L |*"\ 14 "I i Cf *#
*̂ * ̂ * ̂ * I X t P t J *̂ O T1

t -1

s u b j e c t t o

. - OCt - |3 t < f (Cv - Cp ) , t = 1 , 2 , . . . , T

<*t + Yt "Yt+i ^ Co t = 1 , 2 , . . . , T

Ott ^ 0 , p t > 0 , , t = 1 , 2 , . . . , T

The dual formulation if a bounded network flow problem with lower

and upper limits on the variables yt , t = 1,2,...,T.
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