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Basic Question

We will study:
tightness of the re-centered maximum and it’s convergence
in law for log-correlated Gaussian field.

Motivation:
natural statistics for random processes.
influence of the presence of hard wall(i.e., typical value of
GFF given the whole field is positive).( Bolthausen,
Deuschel, Giacomin (’01))
connection to cover-times of random walks. (Ding, Lee,
Peres (’12))
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Applications

In dimension d = 1 it has been proposed as a model of
(the log of) financial market volatility. (Duchon, Robert,
Vargas ’12)

In dimension d = 3 it plays an important role in early
universe cosmology, where it approximately describes the
gravitational potential function of the universe at a fixed
time shortly after the big bang.(Dorelson ’03)
The linear combinations of the two models lattice free field
and membrane model together are considered as models
for semiflexible membranes (or semiflexible polymers if
d = 1).(Kurt ’09)
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Financial volatility - Multifractal Random Walk

Extension to geometric Brownian (GB) model,

which doesn’t
take into account:

The volatility fluctuates randomly and follows
approximately a lognormal distribution.
While the returns are rapidly decorrelated, the volatility
exhibits long range correlations following a power law
The returns are heavy tailed.
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Lattice(VN ) with boundary(∂VN )
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Gaussian Free Fields

A discrete Gaussian free field {ηN
v : v ∈ VN} on two

dimensional box of side length N is :
A mean zero Gaussian field taking the value 0 on the
boundary, ∂VN and

Markov property - for interior points, ηN
v given ηN

{VN\{v}} is
distributed as Gaussian with variance 1 and mean as
average over the immediate neighbors.

Figure: GFF on 60 X 60 square grid(Watson, S.)
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Self-similarity

Here we depict a Koch curve, an example of a self similar
object.
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Self-similarity

Part of an object behaves exactly or approximately as the
original

A stochastic process exhibiting self-similarity is self-similar
process
GFF is self-similar

Rishi Extreme of log-correlated Gaussian fields.
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Pictorial presentation

Figure: GFF on a big box(right), with a smaller section(left)(from
Sheffield, S.)
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Covariance Approximations

The covariance structure is given by the random walk Green’s
function GN(·, ·) where

GN(u, v) = Eu(

τN∑
n=0

1{Sn=v}).

where τN is the hitting time of VN for a simple random walk Sn.

A depiction is done here .

Using approximations from random walk :

GN(u, v) =
2
π

(log N − log |u − v |) + O(1).
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Gaussian membrane model(Kurt (’07,’09))

A Gaussian field {ψN
v : v ∈ VN} where the Hamiltonian is given

by
1
2

∑
v∈VN

(∆ψN
v )2.

Here ∆ is the discrete laplacian operator :

∆ψN
v =

1
2d

d∑
i=1

(ψN
v+ei

+ ψN
v−ei
− 2ψN

v ).

For this model the dimension d = 4 is critical. It is to be noted
that this is a log-correlated gaussian field, again using
approximations from random walk.
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Log-correlated Gaussian field

A normalized discrete log-correlated Gaussian field
{ϕN

v : v ∈ VN} on d-dimensional box of side length N is defined
as follows.

(A.0) (Logarithmically bounded fields) : The first assumption is about
logarithmic upper bounds on variance and covariances
between points

(A.1) (Logarithmically correlated fields) The second assumption is about
logarithmic upper and lower bounds for covariances
between interior points.
From (A.0) it follows that assuming (A.1) only for interior
points, works.

Rishi Extreme of log-correlated Gaussian fields.
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Branching Random Walk

Y1 Y2 Yd−1 Yd

Figure: Branching Random Walk & node of a d-dim BRW

All the edges carry an independent standard Gaussian
variable. The process consists of the values at the leaf nodes,
obtained by summing over all values on the edges from the root
to this node.
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MBRW

Difficulty : Points close by might get separated in trees.

•
•
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Randomize : Randomize over left most corner of boxes.

•
•
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MBRW

Randomize : Randomize over left most corner of boxes.

•
•

Averaging : Averaging over all boxes gives MBRW.

Covariance structure of the GFF is similar to that of an
MBRW.
Gives toroid structure to branching random walk.
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Tightness

The order of right tail , form of expected maximum and tightness follow
from covariance considerations.((Bolthausen, Deuschel,
Zeitouni ’11), (Bramson, Zeitouni ’12), (Ding, Zeitouni ’12))

This could be extended, in a relatively simple fashion to
log-correlated Gaussian fields as long as the covariance
can be approximated up to O(1).

Theorem

Under Assumptions (A.0) and (A.1), we have that
EMN = mN + O(1) where the O(1) term depends on α0 and
α(1/10). In addition, the sequence MN − EMN is tight.

Rishi Extreme of log-correlated Gaussian fields.
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Previous models
Our model
Tightness
Convergence in law

Markovian property helps us to solve the problem of
convergence in law in case of Gaussian free field.
(Bramson, Ding, Zeitouni (’13))

Goal- to find minimal structural assumptions for limit law to
hold.
Obstacle- Markov Random Field.
Way out - convergence of covariance at macroscopic and
microscopic levels.
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Convergence in distribution of log-correlated Gaussian field

The Problem
Previous models
Our model
Tightness
Convergence in law

Covariance assumptions

Microscopic level : We assume that for points inside a box of
smaller order than the original, the covariance splits up into
three parts,

1 involving ratio of the sizes of the boxes
2 the relative position of the points inside the smaller box
3 position of small box inside big box

This is inspired by self-similarity.
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Convergence in distribution of log-correlated Gaussian field

The Problem
Previous models
Our model
Tightness
Convergence in law

Covariance assumptions

Macroscopic level : The covariance between points who distance
is of the order of the box, converges on normalization by
the size of the box.

This is inspired by the convergence of the Green’s function
at macroscopic levels.
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Convergence in distribution of log-correlated Gaussian field

The Problem
Previous models
Our model
Tightness
Convergence in law

Invariance under perturbation

Perturbation - Obtained by adding Gaussians with
variance O(1) at microscopic and macroscopic level.

Robustness - A field Gaussian field whose variance and
covariances are very close to the original field.
Observation - The distribution of the maxima of the
perturbed field is a shift of the original under this
perturbation.
Observation - The distribution of the maxima of the field
close to the original, converges to that that of the original.
Observations-peaks - High values for the field are either
very close or far apart
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New model

The log-correlated Gaussian field is approximated at three
levels.

The assumptions of convergence at microscopic and
macroscopic levels are used to approximate the field at
these two levels.
In the middle level(mesoscopic) we approximate the field
by an MBRW.
The limiting distribution of this new field coincides with the
previous.
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Picture of new model

· · ·
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N/(KL)

ξb
N,·

independent between K ′L′ boxes
ξc

N,·
correlated

constant inside N/(KL) boxes

ξN,·,MBRW

independent between N/(KL) boxes

Figure: Hierarchy of construction of the approximating Gaussian field
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Convergence

Construct fine field comprising the microscopic and
mesoscopic approximations.

Compute the asymptotics of the right tail for the distribution
of the maximum of the fine field.
Combine this with the macroscopic field, to get the result.

Theorem

Under Assumptions (A.0), (A.1), (A.2) and (A.3), the sequence
{MN − EMN}N converges in distribution.
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Convergence

The limiting law of (MN −mN) is characterized as a Gumbel
distribution with random shift. ZN is defined as

ZN =
∑

v∈VN

(
√

2d log N − ϕN,v )e−
√

2d(
√

2d log N−ϕN,v ) .

Theorem

Under ssumptions (A.0), (A.1), (A.2) and (A.3) the the
derivative martingale ZN converges in law to a positive random
variable Z. In addition, the limiting law µ∞ of MN −mN can be
expressed by µ∞((−∞, x ]) = Ee−β

∗Ze−
√

2dx
, for all x ∈ R ,

where β∗ is a positive constant.
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Thank You
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Appendix

Markov property

Markov property is a kind of memoryless property. It says that
future, given present, is independent of the past.

For example, for a sequence of random variables
{X1,X2, . . . ,Xn, . . .} this means that

P(Xn = xn | X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1)

= P(Xn = xn | Xn−1 = xn−1)

Back to GFF .
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For this realization the random walk hits y once before hitting
the boundary.
Back to GFF .
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Appendix

Logarithmically bounded

(A.0)
There exists a constant α0 > 0 such that for all u, v ∈ VN ,
VarϕN,v ≤ log N + α0 &
E(ϕN,v − ϕN,u)2 ≤ 2 log+ |u − v | − |VarϕN,v − VarϕN,u|+ 4α0

Back to assumptions .
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Appendix

Logarithmically correlated

(A.1)

For any δ > 0 there exists a constant α(δ) > 0 such that for all
u, v ∈ V δ

N , |Cov(ϕN,v , ϕN,u)− (log N − log+ |u − v |)| ≤ α(δ).
(V δ

N = {z ∈ VN : d(z, ∂VN) ≥ δN})

Back to assumptions .
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Appendix

Right tail of maximum

Lemma

Under Assumption (A.1), there exists a constant C > 0
depending only on (α0, α

(1/10),d) such that for all
λ ∈ [1,

√
log N],

Cλe−
√

2dλ ≥ P(MN > mN + λ) ≥ C−1λe−
√

2dλ .

Back to tightness .
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Appendix

Expected maximum

The expected value of the maximum of the field is:

mN =
√

2d log N − 3
2
√

2d
log log N . (1)

Back to tightness .
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Appendix

Tightness

The sequence of random variables MN −mN is tight if ∀ε > 0
there exists Kε such that for all sufficiently large N:

P(|MN −mN | > Kε) < ε

Back to tightness .
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Appendix

Microscopic

(A.2)(Near diagonal behavior)

There exist a continuous function f : (0,1)d 7→ R and a function
g : Zd × Zd 7→ R such that the following holds. For all
L, ε, δ > 0, there exists N0 = N0(ε, δ,L) such that for all x ∈ V δ,
u, v ∈ [0,L]d and N ≥ N0 we have

|Cov(ϕN,xN+v , ϕN,xN+u)− log N − f (x)− g(u, v)| < ε .

Back to microscopic .
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Appendix

Macroscopic

Dd = {(x , y) : x , y ∈ (0,1)d , x 6= y}

(A.3)(Off diagonal behavior)

There exists a continuous function h : Dd 7→ R such that the
following holds. For all L, ε, δ > 0, there exists
N1 = N1(ε, δ,L) > 0 such that for all x , y ∈ V δ with |x − y | ≥ 1

L
and N ≥ N1 we have

|Cov(ϕN,xN , ϕN,yN)− h(x , y)| < ε .

Back to macroscopic .

Rishi Extreme of log-correlated Gaussian fields.
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Back to Robustness .
Rishi Extreme of log-correlated Gaussian fields.
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