Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/2074/10805
Title: Dynamic smoothness parameter for fast gradient methods
Authors: Frangioni, Antonio 
Gendron, Bernard 
Gorgone, Enrico 
Keywords: Fast gradient method;Lagrangian relaxation;Convex optimization
Issue Date: 2018
Publisher: Springer
Abstract: We present and computationally evaluate a variant of the fast gradient method by Nesterov that is capable of exploiting information, even if approximate, about the optimal value of the problem. This information is available in some applications, among which the computation of bounds for hard integer programs. We show that dynamically changing the smoothness parameter of the algorithm using this information results in a better convergence profile of the algorithm in practice.
URI: https://repository.iimb.ac.in/handle/2074/10805
ISSN: 1862-4472
DOI: https://doi.org/10.1007/S11590-017-1168-Z
Appears in Collections:2010-2019

Files in This Item:
File SizeFormat 
Gorgone_OL_2018_Vol.12_Iss.1.pdf861.12 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.