Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/2074/10809
DC FieldValueLanguage
dc.contributor.authorGhosh, Pulak
dc.contributor.authorHanson, Timothy
dc.date.accessioned2020-03-12T11:55:17Z-
dc.date.available2020-03-12T11:55:17Z-
dc.date.issued2010
dc.identifier.issn1369-1473
dc.identifier.urihttps://repository.iimb.ac.in/handle/2074/10809-
dc.description.abstractWe extend the standard multivariate mixed model by incorporating a smooth time effect and relaxing distributional assumptions. We propose a semiparametric Bayesian approach to multivariate longitudinal data using a mixture of Polya trees prior distribution. Usually, the distribution of random effects in a longitudinal data model is assumed to be Gaussian. However, the normality assumption may be suspect, particularly if the estimated longitudinal trajectory parameters exhibit multi?modality and skewness. In this paper we propose a mixture of Polya trees prior density to address the limitations of the parametric random effects distribution. We illustrate the methodology by analysing data from a recent HIV?AIDS study.
dc.publisherWiley
dc.subjectConditional predictive ordinate
dc.subjectLongitudinal data
dc.subjectMixture of Polya trees
dc.subjectPenalizedspline.
dc.titleA semiparametric bayesian approach to multivariate longitudinal data
dc.typeJournal Article
dc.identifier.doihttps://doi.org/10.1111/J.1467-842X.2010.00581.X
dc.pages275-288p.
dc.vol.noVol.52-
dc.issue.noIss.3-
dc.journal.nameAustralian & New Zealand Journal Of Statistics
Appears in Collections:2010-2019
Files in This Item:
File SizeFormat 
Ghosh_ANZJS_2010_Vol.52_Iss.3.pdf289.41 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.