Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/2074/11153
DC FieldValueLanguage
dc.contributor.authorNagadevara, Vishnuprasad-
dc.date.accessioned2020-03-27T13:18:57Z-
dc.date.available2020-03-27T13:18:57Z-
dc.date.issued2019-
dc.identifier.isbn9783319688367-
dc.identifier.isbn9783319688374-
dc.identifier.issn2157-3611-
dc.identifier.urihttps://repository.iimb.ac.in/handle/2074/11153-
dc.description.abstractThree topics are covered in this chapter. In the main body of the chapter, the tools for estimating the parameters of regression models when the response variable is binary or categorical are presented. The appendices cover two other important techniques, namely, maximum likelihood estimate (MLE) and how to deal with missing data.-
dc.publisherSpringer New York LLC-
dc.subjectStatistics-
dc.subjectRegression analysis-
dc.titleAdvanced regression analysis-
dc.typeBook Chapter-
dc.identifier.doi10.1007/978-3-319-68837-4_8-
dcterms.isPartOfEssentials of Business Analytics: An Introduction to the Methodology and its Applications-
dc.pages247-281p.-
dc.vol.noVol.264-
Appears in Collections:2010-2019
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.