Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/2074/11485
DC FieldValueLanguage
dc.contributor.authorBasu, Arnab
dc.contributor.authorSamik Basu
dc.contributor.authorMahan, M J
dc.date.accessioned2020-04-07T13:23:07Z-
dc.date.available2020-04-07T13:23:07Z-
dc.date.issued2014
dc.identifier.issn0253-4142
dc.identifier.urihttps://repository.iimb.ac.in/handle/2074/11485-
dc.description.abstractGiven a multifunction from X to the k-fold symmetric product Sym k (X), we use the Dold–Thom theorem to establish a homological selection theorem. This is used to establish existence of Nash equilibria. Cost functions in problems concerning the existence of Nash equilibria are traditionally multilinear in the mixed strategies. The main aim of this paper is to relax the hypothesis of multilinearity. We use basic intersection theory, Poincaré duality in addition to the Dold–Thom theorem.
dc.publisherIndian Academy Of Sciences
dc.subjectDold-Thom Theorem
dc.subjectHomological Selection
dc.subjectNash Equilibria
dc.titleNash equilibria via duality and homological selection
dc.typeJournal Article
dc.identifier.doi10.1007/S12044-014-0206-3
dc.pages581-602p.
dc.vol.noVol.124-
dc.issue.noIss.4-
dc.journal.nameProceedings of The indian Academy of Sciences: Mathematical Sciences
Appears in Collections:2010-2019
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.