Please use this identifier to cite or link to this item: https://repository.iimb.ac.in/handle/2074/12583
DC FieldValueLanguage
dc.contributor.authorGhosh, Pulak
dc.contributor.authorGill, Paramjit
dc.contributor.authorMuthukumarana, Saman
dc.contributor.authorSwartz, Tim
dc.date.accessioned2020-06-19T15:09:15Z-
dc.date.available2020-06-19T15:09:15Z-
dc.date.issued2010
dc.identifier.issn1467-842X
dc.identifier.urihttps://repository.iimb.ac.in/handle/2074/12583-
dc.description.abstractThis paper considers the use of Dirichlet process prior distributions in the statistical analysis of network data. Dirichlet process prior distributions have the advantages of avoiding the parametric specifications for distributions, which are rarely known, and of facilitating a clustering effect, which is often applicable to network nodes. The approach is highlighted for two network models and is conveniently implemented using WinBUGS software.
dc.publisherWiley
dc.publisherAustralian Statistical Publishing Association
dc.subjectBayesian approach
dc.subjectNetwork modelling
dc.subjectStatistical analysis
dc.subjectDirichlet process
dc.titleA semiparametric Bayesian approach to network modelling using Dirichlet process prior distributions
dc.typeJournal Article
dc.identifier.doi10.1111/j.1467-842X.2010.00583.x
dc.pages289-302p.
dc.vol.noVol.52-
dc.issue.noIss.3-
dc.journal.nameAustralian and New Zeland Journal of Statistics
Appears in Collections:2010-2019
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.