Please use this identifier to cite or link to this item:
https://repository.iimb.ac.in/handle/2074/10809
Title: | A semiparametric bayesian approach to multivariate longitudinal data | Authors: | Ghosh, Pulak Hanson, Timothy |
Keywords: | Conditional predictive ordinate;Longitudinal data;Mixture of Polya trees;Penalizedspline. | Issue Date: | 2010 | Publisher: | Wiley | Abstract: | We extend the standard multivariate mixed model by incorporating a smooth time effect and relaxing distributional assumptions. We propose a semiparametric Bayesian approach to multivariate longitudinal data using a mixture of Polya trees prior distribution. Usually, the distribution of random effects in a longitudinal data model is assumed to be Gaussian. However, the normality assumption may be suspect, particularly if the estimated longitudinal trajectory parameters exhibit multi?modality and skewness. In this paper we propose a mixture of Polya trees prior density to address the limitations of the parametric random effects distribution. We illustrate the methodology by analysing data from a recent HIV?AIDS study. | URI: | https://repository.iimb.ac.in/handle/2074/10809 | ISSN: | 1369-1473 | DOI: | https://doi.org/10.1111/J.1467-842X.2010.00581.X |
Appears in Collections: | 2010-2019 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Ghosh_ANZJS_2010_Vol.52_Iss.3.pdf | 289.41 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.